168 research outputs found

    Paper Based Pressure Sensor for Green Electronics

    Get PDF
    This work reports a resistive paper-based disposable pressure sensor based on porous 3D conductive cellulose micro-fiber network. The conductivity in microfibers was achieved by subjecting the network to graphene oxide (GO) - poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) solution. The modified cellulose matrix is sandwiched between graphite paper electrodes so that overall structure is flexible. The device tested in 32-386 Pa range detected a minimum of 34 Pa and exhibited fast dynamic response (in tenths of seconds) with excellent repeatability. The proposed approach for disposable sensors is a step towards green electronics and holds promise for wide range of wearable applications

    Graphene Oxide-Chitosan Based Flexible Biosensor

    Get PDF
    The paper presents flexible graphene oxide (GO)-Chitosan composite based biosensor for electrochemical detection of dopamine (DA). Electrochemical redox based detection tool for analytes has gained popularity due to their high specificity, sensitivity and label free technique. The GO-Chitosan based electrochemical electrodes presented here for three-electrode voltammetry have Ag/AgCl and Platinum based reference and counter electrode, respectively. The cyclic voltammetry (CV) of DA with as prepared electrode show quasi-reversible behaviour with characteristic cathodic peak (7pc) at +200mV and anodic peak (7pa) at -400mV. The voltammogram showed stability against repetitive scan cycles while the peak current showed increase with scan rates (100-200mV/s). The sensors show steady state peak enhancement (6.05-134.05pA) with DA concentration range of 0-100pM. The fabricated electrode is suitable for measuring DA with high sensitivity. The biodegradability of the prepared electrode is suitable for eco-friendly and disposable applications, which aligns with the green technology

    Mesoporous chitosan based conformable and resorbable biostrip for Dopamine detection

    Get PDF
    This work presents a chitosan based resorbable biostrip for label-free electrochemical detection of dopamine (DA).The biostrip consists of mesoporous-chitosan-graphene oxide (m-Chit-GO) composite-based sensing electrode and graphene-based interconnects. Obtained with particulate leaching, the m-chit-GO showed average pore size of 1μmwith slow (2 h) curing process. The response of DA on m-Chit-GO was investigated and compared with their bulk counterpart to study the effect of mesoporosity on voltammogram output signals. The voltammetric investigations were performed with three-electrode set-up using m-Chit-GO electrode as working electrode whereas Ag/AgCl and Graphene were used as a reference and counter electrodes, respectively. The quantitative analysis of concentration-dependent voltammetric peak-current enhancement revealed significantly higher response for m-Chit-GO (10pM) as compared to their bulk state (100 nM) on DA. The presented resorbable biostrip offers a limit of detection of 10pM and thereby shows great promise for detection of DA levels for early diagnosis of neurodegenerative diseases

    Integrin-dependent control of translation: engagement of integrin alphaIIbbeta3 regulates synthesis of proteins in activated human platelets.

    Get PDF
    Integrins are widely expressed plasma membrane adhesion molecules that tether cells to matrix proteins and to one another in cell-cell interactions. Integrins also transmit outside-in signals that regulate functional responses of cells, and are known to influence gene expression by regulating transcription. In previous studies we found that platelets, which are naturally occurring anucleate cytoplasts, translate preformed mRNA transcripts when they are activated by outside-in signals. Using strategies that interrupt engagement of integrin alphaIIbbeta3 by fibrinogen and platelets deficient in this integrin, we found that alphaIIbbeta3 regulates the synthesis of B cell lymphoma 3 (Bcl-3) when platelet aggregation is induced by thrombin. We also found that synthesis of Bcl-3, which occurs via a specialized translation control pathway regulated by mammalian target of rapamycin (mTOR), is induced when platelets adhere to immobilized fibrinogen in the absence of thrombin and when integrin alphaIIbbeta3 is engaged by a conformation-altering antibody against integrin alphaIIbbeta3. Thus, outside-in signals delivered by integrin alphaIIbbeta3 are required for translation of Bcl-3 in thrombin-stimulated aggregated platelets and are sufficient to induce translation of this marker protein in the absence of thrombin. Engagement of integrin alpha2beta1 by collagen also triggered synthesis of Bcl-3. Thus, control of translation may be a general mechanism by which surface adhesion molecules regulate gene expression
    • …
    corecore